(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 9618 Roll No.

B. Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2013-14

MATHEMATICS—III

Time: 3 Hours

Total Marks: 100

Note: Attempt all questions.

- 1. Attempt any four parts of the following: $(4\times5=20)$
 - (a) Define analytic function. Discuss the analyticity of $f(z) = Re(z^3)$ in the complex plane.
 - (b) Show that $v(x, y) = e^{-x} (x \cos y + y \sin y)$ is harmonic. Find its harmonic conjugate.
 - (c) Integrate f(z) = Re(z) from z = 0 to z = 1 + 2i, (i) along straight line joining z = 0 to z = 1 + 2i, (ii) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary axis from z = 1 to z = 1 + 2i.
 - (d) Evaluate $\int_{C} \frac{(1+z)\sin z}{(2z-3)^2} dz$, where C is the circle |z-i|=2

counter-clockwise.

(e) Find all Taylor and Laurent series expansion of the following function about z=0

$$f(z) = \frac{-2z+3}{z^2-3z+2}$$

(f) Use contour integration to evaluate:

$$\int_{0}^{2\pi} \frac{d\theta}{3-2\cos\theta+\sin\theta}.$$

- 2. Attempt any two parts of the following: (2×10=20)
 - (a) Define moment generating function. Why is it called moment generating function?

If
$$P(X = x) = \frac{1}{2^x}$$
, $x = 1, 2, 3, \dots$, find the moment generating function of x. Hence obtain the variance.

(b) Determine the normal equations if the curve $y = ax + bx^2$ is fitted to the data (x_i, y_i) , i = 1, 2,m. Hence fit this curve to the data:

x	1	2	3	4	5
у	1.8	5.1	8.9	14.1	19.8

(c) Calculate the coefficient of correlation between the following ages of husband (x) and wife (y) by taking 30 and 28 as assumed mean in case of x and y respectively:

x	24	27	28	28	29	30	32	33	35	35	40
у	18	20	22	25	22	28	28	30	27	30	32

- 3. Attempt any two parts of the following: (2×10=20)
 - (a) Out of 800 families with four children each, how many families would be expected to have (i) 2 boys and 2 girls,
 (ii) at least one boy, (iii) no girl, (iv) at most two girls.
 Assume equal probabilities for boys and girls.
 - (b) Two groups of 100 people each were taken for testing the use of a vaccine. 15 persons contracted the disease out of the inoculated persons, while 25 contracted the disease in the other group. Test the efficacy of the vaccine using chi-square test. (The value of χ² for one degree of freedom at 5% level of significance is 3.84).

(c) Calculate the trend values by the method least square fit to a straight line and hence estimate profit for 1981:

Year	1971	1972	1973	1974	1975	1976	1977
Profit	60	72	75	65	80	85	95
(thousands)	00	12	/3	05			

- 4. Attempt any four parts of the following: $(4\times5=20)$
 - (a) Explain Newton-Raphson method and use it to find the positive root of $x^4 = x + 10$ correct to three decimal places.
 - (b) Find the root of the equation $2x(1-x^2+x) \ln x = x^2-1$, lying in the interval [0, 1] using Regula-Falsi method.
 - (c) Prove that $1 + \delta^2 \mu^2 = \left(1 + \frac{1}{2}\delta^2\right)^2$, where symbols have their usual meaning for finite differences.
 - (d) Use Newton-Gregory formula to interpolate the value of y at x = 36 from the following data:

x	21	25	29	33	37
у	18.4	17.8	17.1	16.3	15.5

(e) Find f(x) as a polynomial in x for the following data using Newton's divided difference formula:

х	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

(f) Using Lagrange's interpolation formula, find polynomial which takes the values 3, 12, 15, -21 when x has the values 3, 2, 1, -1.

3

- 5. Attempt any two parts of the following: $(2\times10=20)$
 - (a) Factorize the matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & 1 & 1 \\ 1 & 4 & -2 \\ 3 & 2 & -4 \end{array} \right]$$

in the form LU, where L is lower triangular matrix and U is the unit upper triangular matrix and hence solve the system of equations:

$$4x_1 + x_2 + x_3 = 4;$$

 $x_1 + 4x_2 - 2x_3 = 4;$
 $3x_1 + 2x_2 - 4x_3 = 6.$

(b) (i) A slider in a machine moves along fixed straight rod.

Its distances x(m) along the rod are given at various times (sec)

t	1.0	1.1	1.2	1.3	1.4	1.5
х	16.40	19.01	21.96	25.29	29.03	33.21

Find the velocity of the slider at t = 1.1 sec.

(ii) Evaluate $\int_{0}^{2x} (e^{-t} \sin 10t) dt$, using Simpson's rule

with eight intervals.

(c) Given the initial value problem

$$\frac{dy}{dx} = \frac{2xy}{x^2 - y^2}, y(1) = 3.$$

Find the numerical solution for x = 1.2 and x = 1.5 by using Runge-Kutta method of fourth order.